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Traditionally, AI researchers have been attracted by the idea of creating machines that 
are intelligent, or understanding of the nature of human intelligence. My path to becoming an 
AI researcher was nontraditional, and in a way, this path has shaped my view on what the 
important issues are in AI.  My computer science Ph.D. dissertation was not in AI or a related 
field, but in parallel computer architectures and operating systems [1] — yet, in a surprising 
way its origins are indirectly linked to AI. The idea for my dissertation grew from a term 
project that I did in a computer architecture course that Professor John McCarthy taught when 
I began my graduate studies at Stanford in the fall of 1966. 
 
AI at the Forefront of Software Complexity 
 

It was probably inevitable that I would eventually do research in AI since my abiding 
attraction to computer science has been the opportunity for constructing complex hardware 
and software artifacts and understanding how they operate. Since its inception, AI has pushed 
the boundaries of software complexity in order to construct programs that exhibit intelligence. 
Essential to the AI enterprise, and probably the aspect that has caused its software to be 
complex from the very beginning, is the need to deal directly with uncertainty in its many 
guises—uncertainty in: the information that is sensed from the environment; the situation 
specificity of knowledge (there is rarely common-sense knowledge that can be applied 
uniformly over a broad spectrum of real-world situations); the lack of complete theories that 
fully explain naturally occurring phenomena; and the bounded rationality of computation (NP 
hardness) that makes it impossible to fully assess all options. Dealing with the ubiquitous 
uncertainty in both data and control has led to ideas such as delayed resolution of uncertainty 
through non-deterministic and assumption-based computation, asynchronous and 
opportunistic application of knowledge and its associated constraints, exploiting approximate 
knowledge and heuristics to focus problem-solving activities, combining diverse sources of 
knowledge to resolve uncertainty, and self-aware computation and meta-level reasoning to 
provide more context for decision making under uncertainty. 

Having uncertainty as a first-class concept in computation, and the related need for large 
amounts of knowledge (and its modular representation and flexible application), have caused 
AI to constantly go beyond the contemporaneous boundaries of software complexity. This 
will likely continue in the future as the field builds increasingly advanced intelligent systems 
that operate in more open, distributed and real-world environments. The architectural design 
and control of such intelligent systems in terms of defining the components that make up the 
system and specifying the mechanisms and protocols that define their interaction has been an 
important aspect of my research. 
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The Beginnings of My Career in AI 
 

I feel fortunate to have launched my AI career as the system architect on the Hearsay-II 
speech-understanding project [7] at its inception in late 1972 at CMU, under the leadership of 
Professor Raj Reddy1, along with other team members including Lee Erman, Rick Fennell and 
Rick Hayes-Roth. The ideas that developed around this project and the lessons learned in 
building this blackboard problem-solving system have been extremely influential in the 
research directions I have explored in my career. These laid the groundwork for my 
understanding of the complex interaction of knowledge and search control necessary to bring 
to bear in an effective way a diverse and large set of constraints to resolve a variety of 
uncertainties in knowledge, data and control. In the case of a blackboard problem-solving 
architecture, this interaction took the form of an asynchronous, opportunistic, incremental and 
multi-level search process. 
 

Self-Aware Control and Self-Describing Components 
 

In controlling the blackboard search process, I came to understand the need for control 
mechanisms that could make use of an abstract and global view of the search progress so as to 
determine where search should be directed next, and that the control in itself was a problem-
solving activity [3, 15]. I also realized that the specific type of knowledge-source modularity 
in the blackboard architecture in which knowledge sources made very few assumptions about 
how their knowledge contributions would be used by other components and in what context 
they would be used was a powerful idea. This context modularity made possible not only ease 
of system evolution but also adaptive problem solving where the control system can react 
effectively to the evolving problem-solving system state by being able to dynamically 
sequence components. For instance, this permitted Hearsay-II to find alternative paths to the 
correct speech interpretation if a correct partial solution path failed because of a knowledge 
error.  

A key aspect of Hearsay-II’s approach to modularity was the self-describing nature of the 
knowledge sources’ activity patterns (both static and dynamic)2. This information could then 
be used for effective control without the need for understanding how and what knowledge 
would interact prior to the construction of the control component [6].  

 

                                                
1My transition to AI from systems was not as abrupt as it may appear. My initial AI work at CMU had 
a systems oriented flavor; I was responsible for implementing a parallel processing version of 
Hearsay-I on a multi-processor C.MMP that had just been developed at CMU [2]. In fact, one of the 
initial focuses on the design of Hearsay-II was its ability to be run on a multi-processor [5], which is 
probably why I was chosen as a member of the Hearsay-II design team. Additionally, I flirted with AI 
earlier when I worked for Professor Reddy in the summer of 1967 looking at how techniques used in 
information retrieval could be applied to pattern classification problems in AI. Prior to that, I had 
worked for Professor Gerald Salton on information retrieval during my senior undergraduate year at 
Cornell.  
2 I had used a similar idea of self-describing computation in a more primitive form in my Ph.D. thesis, 
where I included a declarative representation of the application process structure to help in the 
hardware scheduling of processes on processors.  
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Dynamically Varying Assumptions 
 

For efficiency reasons, the number of hypotheses on the blackboard needed to be limited 
in the Hearsay-II implementation; however, it was clear that these limits (thresholds on 
hypothesis generation) were context-dependent and had to be modified selectively if problem 
solving was not progressing as expected. Modifying these thresholds caused less likely 
hypotheses to be generated that in turn permitted the exploration of other problem-solving 
paths that were initially considered unlikely [3].  

This need for dynamic thresholds led me to understand that the large number of 
assumptions (which are implemented as system parameters) that are made in controlling a 
problem-solving system must be made explicit in order for the system to reason about these 
assumptions. Exploiting assumptions is a valid way of restricting the complexity and 
overhead of control decision-making in a problem-solving system, but as problem solving 
gets more complex and the environment in which the system operates is more open, these 
assumptions need to be revisited in light of both the emerging problem-solving situation and 
the current environment. Associated with revision of assumptions is the need to be able to 
detect that problem solving is not progressing satisfactorily, diagnose why it is not 
progressing, revise assumptions that are no longer valid, and then re-plan how to approach 
problem solving based on these new assumptions [11, 21]. 
 

Diverse and Approximate Knowledge 
 

I also learned from my experiences with Hearsay-II the value of diverse and approximate 
knowledge. The diversity of knowledge increases the flexibility of the system to find 
alternative way of solving a problem. When there are errors or incompleteness in one source 
of knowledge it is possible that another source of knowledge will be able to generate the 
appropriate solution. Multiple perspectives also provide additional error correcting 
capabilities in terms of the system being able to compare alternative hypotheses generated 
from different knowledge perspectives. 

The use of approximate knowledge, which in general requires much less computation to 
exploit than more exacting knowledge, was also an important part of Hearsay-II’s 
implementation. This approximate knowledge was used for self-aware control [3] and 
hypotheses generation [4] to direct the search in appropriate directions. Furthermore, 
approximate knowledge can often be used to generate complete solutions (though not 
necessarily optimal nor with perfect precision) that have significant utility with 
correspondingly much lower computational costs [29]. 
 

Multi-Agent Systems Pushing the Boundaries of AI Software Complexity 
 
Multi-Agent Systems (first called Distributed AI) were initially developed out of 

applying AI problem solving in a distributed context (such as a robotic team or distributed 
sensor network) where there was a spatially distributed set of computers (now called agents) 
— possibly with local sensing and effecting capabilities, operating asynchronously and 
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concurrently — that could talk with one another over a low-bandwidth communication 
network. This bandwidth limitation was most interesting to me because it not only introduced 
the need for distributed control, but also increased the amount of uncertainty present in the 
system because it was no longer possible to accurately construct a complete view of the 
problem-solving activities (and their associated results) of all the agents in the network. The 
development of distributed techniques for managing and resolving problem-solving 
uncertainty, including both data and control, has been one of my central concerns since the 
completion of the Hearsay-II speech understanding project in 19764 [8, 9, 12, 13, 25, 28]. 

I have purposely used the term “managing uncertainty” to recognize the fact that in AI 
(and especially multi-agent) systems there will always be problems that cannot be solved 
optimally (nor in every situation will the correct answer be chosen) due to limitations based 
not only on the incompleteness and inaccuracy of the system’s knowledge, but also on 
computation and communication limitations (bounded rationality) [9, 16]. Thus, Simon’s idea 
of satisficing problem solving was, and to my mind, always will be, central to the AI 
enterprise. These observations have led me to study: 1) how the interaction of diverse sources 
of knowledge in a distributed search can be used to manage and resolve uncertainty, and 2) 
how self-aware local control and agent coordination can be used to control this distributed 
search. In developing this multi-agent control, I have viewed control as a first-class problem-
solving activity, made it as generic as possible through self-describing agents, and enabled it 
to be adaptable in response to emerging problem-solving conditions and available resources.  
 

The Need for Experimental AI 
 

In performing research in multi-agent systems (MAS), I have always emphasized 
building and empirically evaluating complex applications. Again, this orientation has risen 
from my experiences with the Hearsay-II system. I have found that dealing with details and 
constraints of real applications has continually pushed the development of new ideas. In such 
applications, you cannot easily sweep problems under the rug. Although there can be 
significant start-up costs in knowledge engineering a real-world application, in my experience 
those costs have been worthwhile. Although sometimes I have needed to reduce the 
complexity of the problem domain, this step has come after first tackling the harder problem 
and realizing how and why current approaches fail. Recently, I worked with Professor Shlomo 
Zilberstein on developing more formally based approaches to agent coordination using 
decentralized Markov decision processes [24]. In this work, I recognized the value of starting 
with a problem of simpler complexity and then addressing more complex problems as the 
formal framework and the appropriate solution techniques are better understood.  I suspect 
there is no single best approach for all situations, and the right approach depends in part on 
the personality of the researcher and the specifics of the problem. 
 

                                                
4I also worked on a more advanced blackboard problem-solving architecture for understanding 
overlapping household sounds, called IPUS [17]. This architecture used many of the insights described 
above to allow for dynamic and adaptive signal reprocessing based on a detection and diagnosis model 
for meta-level control.  



 5 

Experimentation is More than Gathering Statistics 
 

With the ever-increasing availability of computing cycles, extensive empirical evaluation 
of systems is feasible.  However, it takes more than gathering statistics about the performance 
of the system. Understanding in detail why a system works or not in a specific problem-
solving instance has continually provided insights that have pointed me to new research 
directions. Probably the most compelling example was my realizing, by looking at the trace of 
a Hearsay-II run, that even though there was a serious knowledge error, there was enough 
redundancy in the knowledge base and flexibility in the search process for the correct solution 
to be derived. This experience, and a follow-on experience with a parallel version of Hearsay-
II (that worked almost correctly without all the elaborate synchronization mechanisms that 
had been constructed to avoid inconsistency when there was concurrent updating of the 
blackboard), led to my work on multi-agent systems [5]. I had the insight that agents did not 
require complete, up-to-date and consistent information for their local problem solving to be 
worthwhile. Even if they were not always producing correct partial solutions, they could still 
converge on the correct solution most of the time by combining an appropriately structured 
cooperative dialogue that implemented a flexible distributed search process together with 
some level of knowledge and data redundancy distributed across the agents [8, 9].  

Thus, as an AI system architect I have been concerned about how to add both internal 
and external mechanisms to the application so that it is possible to quickly understand the 
detailed functioning of the system, not only for debugging but also for understanding how it 
works [6, 10, 22]. I believe that as we continue to build increasingly more complex 
applications, these “system understanding” tools will be crucial to their successful 
implementation.  
 
Learning as an Integral Part of the System’s Architecture  
 

In a similar vein, it is important to consider on-going learning as a first-class activity of 
any system that will operate in an open environment [19, 20]. This is especially true in 
complex applications where there are many parameters (with their associated assumptions 
about the environment and problem-solving behavior) that have to be set appropriately if the 
system is to operate effectively in a specific environmental setting. However, the 
computational costs of this on-going learning may not permit it to be always turned on. Thus, 
the decision of when to perform learning should be made by the control component [21]. 
 

The Challenges of Scaling up Multi-Agent Systems 
 

One approach that I have been pursuing for the next generation of complex AI 
applications is using organizational control to scale up multi-agent systems to large networks 
of hundreds to thousands of intelligent agents [23, 28]. Organizational control is a multi-level 
control approach in which organizational goals, roles, and responsibilities are dynamically 
developed, distributed, and maintained to serve as guidelines for making detailed operational 
control decisions by the individual agents. Scaling up through organizational control is one 
way of approaching the development of highly intelligent and persistent systems that will 
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bring to bear a wide range and large body of knowledge to their reasoning and that will 
operate in open and evolving environments.  
 

Formalizing our Understanding of AI Architectures  
 

AI architectures used in complex applications have generally had an informal character 
and their performance has been evaluated from an empirical perspective. Based on the 
paradigm shift in AI towards more formal and decision-theoretic problem-solving frameworks 
and detailed analysis of their performance characteristics, it is clear to me that this shift will 
also affect how complex AI applications are designed and understood. It does not necessarily 
mean that the informal character of AI architectures for complex applications will disappear; 
however, their performance has to be understood from a more formal basis. This trend is 
already occurring. There are already numerous case studies where the performance of a 
sophisticated multi-agent system involving multi-step knowledge interaction sequences has 
been effectively analyzed from a quantitative perspective using statistical and queuing theory 
models based on a deep understanding of the key parameters and interactions that affect 
performance [14, 27]. 

It was very rewarding to see the application of formal analysis techniques to a blackboard 
problem-solving system that many now see as an ad-hoc problem-solving architecture. This 
analysis predicted the performance of the system, while also providing insight into which 
situations a particular control regime would be effective in, and why. This work was done by 
one of my students, Robert Whitehair [18], for the specific task domain of sensor 
interpretation. Thus, I believe that the performance of less formally based AI architectures can 
be understood more formally, thereby gaining wider acceptance by AI researchers as valid 
approaches for building complex AI applications.  

Likewise, the recent work on formalizing agent coordination through decentralized 
Markov decision processes [24] has been very exciting. It has shown, in general, how hard 
multi-agent coordination is, and how easy it is to find simple applications that are very hard. 
This implies that some amounts of heuristic and approximate reasoning need to be applied to 
use this formal framework in practical applications. These observations coincide with those of 
Professor Milind Tambe [26] on the importance of hybrid architectures as an approach to 
building complex intelligent systems. These hybrid systems are built from some components 
that use formal decision theoretic methodologies, while other components use methodologies 
more symbolic and possibly heuristic in character. The blackboard problem-solving 
framework is an early example of a hybrid architecture because each knowledge source could 
be built with its own specialized technology. Indeed, in the Hearsay-II speech understanding 
system, most knowledge sources were heuristic, but a key knowledge source for doing word 
recognition used a hidden Markov model for its internal reasoning. 
 
Closing Thoughts 
 

I see AI architects as indispensable to the effective construction of future complex and 
open applications because of both the satisficing nature of AI computation and the range of 
different types of uncertainty that will be present. However, I do think that the arsenal of both 
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formal and informal tools, frameworks and methodologies that they will use in developing 
and understanding the intelligent systems they create will be much more sophisticated and 
extensive than the ones that I have used.  

On a personal note, being an AI system architect has led to a highly rewarding and 
exciting career, challenging me intellectually at every step. I have no doubt that the next 
generation of AI architects will have similar experiences. I have also been very fortunate to 
have worked with wonderful teams of colleagues and graduate students. Without their 
creativity, hard work and collegiality, my career would have taken a very different path. I also 
need to give special thanks to my mentor, Professor Raj Reddy, who started me down the path 
of AI and encouraged me to pursue the area of multi-agent systems.  
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